2/7/11

UPC Overview

http://upc.lbl.gov

Katherine Yelick
NERSC Director

Lawrence Berkeley National Laboratory

NEeR Cray XE Training

What’s Wrong with MPI Everywhere

 We can run 1 MPI process per core (“flat MPI”)
- This works now on dual and quad-core machines
- It will work on 12-24 core machines like Hopper as well

« What are the problems?

— Latency: some copying required by semantics

- Memory utilization: partitioning data for separate address space
requires some replication

« How big is your per core subgrid? At 10x10x10, over 1/2 of the points
are surface points, probably replicated

» Weak scaling: success model for the “cluster era;” will not be for the many core
era -- not enough memory per core

- Heterogeneity: MPI per CUDA thread-block?

« Approaches

- MPI + X, where X is OpenMP, Pthreads, OpenCL, TBB,...
- A PGAS language like UPC, Co-Array Fortran, Chapel or Titanium

>

rr/r-rr}

W 2/7/11 NER Cray XE Trainin 2 ()
y 9 sl

PGAS Languages

» Global address space: thread may directly read/write remote data
 Hides the distinction between shared/distributed memory

* Partitioned: data is designated as local or global
* Does not hide this: critical for locality and scaling

o i |
§ x: 1 i/'x:S x: 7
é y:_\ i y: y: 0
5 > 7
)] - o)
= / 7
S g: g: g: /
G
PO p1 PN

« UPC, CAF, Titanium: Static parallelism (1 thread per proc)
e Does not virtualize processors
« X10, Chapel and Fortress: PGAS,but not static (dynamic threads)

>

':”} " 27711 m Cray XE Training 3 ()

UPC Outline

Background

UPC Execution Model

Basic Memory Model: Shared vs. Private Scalars
Synchronization

Collectives

Data and Pointers

Dynamic Memory Management

Performance

Beyond UPC

© 0N R WD =

;}l " 2/7/11 m Cray XE Training
‘

Context

* Most parallel programs are written using either:
-Message passing with a SPMD model (MPI)
« Scales easily on clusters
-Shared memory with threads in OpenMP, Threads
* |[n practice, requires shared memory hardware

« Partitioned Global Address Space (PGAS) Languages take
the best of both:

—-Global address space like threads (programmability)
-SPMD parallelism like most MPI programs (performance)
—-Local/global distinction, i.e., layout matters (performance)

r/r/rhl ‘m‘ 2/7/11 m Cray XE Training 5
\ s 4

History of UPC

* Initial Tech. Report from IDA in collaboration with LLNL
and UCB in May 1999 (led by IDA).

-UCB version based on Split-C

- based on course project, motivated by Active Messages

-IDA based on AC:
- think about “GUPS” or histogram; “just do it” programs

« UPC Consortium controls the language spec:

-UPC is a community effort, well beyond UCB/LBNL

-ARSC, CSC, Cray Inc., Etnus, GMU, HP, IDA CCS, Intrepid,
LBNL, LLNL, MTU, NSA, SGl, Sun, UCB, U. Florida, DOD

-Design goals: high performance, expressive, consistent
with C goals, ..., portable

« Several compilers, both commercial and open source:
. -Cray, HP, IBM, Berkeley, gcc-upc (Intrepid)

2/7/11 m Cray XE Training

UPC Execution
Model

2/7/11 m Cray XE Training

UPC Execution Model

* A number of threads working independently in a SPMD
fashion

- Number of threads specified at compile-time or run-time;
available as program variable THREADS

- MYTHREAD specifies thread index (0. . THREADS-1)

- upc_barrier is a global synchronization: all wait

- There is a form of parallel loop that we will see later
* There are two compilation modes

- Static Threads mode:
« THREADS is specified at compile time by the user
* The program may use THREADS as a compile-time constant

— Dynamic threads mode:
» Compiled code may be run with varying numbers of threads

>

L‘/”f\lf\"'"‘Z/?/H m Cray XE Training 8 ()

EEEEEEEEEEE

>

rreeerer

EEEEEEEEEEE

Hello World in UPC

* Any legal C program is also a legal UPC program

* [f you compile and run it as UPC with P threads, it will
run P copies of the program.

 Using this fact, plus the identifiers from the previous
slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main () {
printf ("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS) ;

.ﬁ‘ 2/7/11 NEeR Cray XE Training 9

Example: Monte Carlo Pi Calculation

 Estimate Pi by throwing darts at a unit square
 Calculate percentage that fall in the unit circle

—Area of square =r2 = 1

—Area of circle quadrant = % * x r? = /4
 Randomly throw darts at x,y positions
« If X2 + y2 <1, then point is inside circle
« Compute ratio:

—-# points inside / # points total

- 1 = 4*ratio

-~
A
rrrrrrr ‘ml

2/7/11 NEF Cray XE Training 10 (1)

Pi in UPC

* Independent estimates of pi:

main (int argc, char **argv) {
int i, hits, trials = 0; Each thread gets its own
double pi; copy of these variables

1000000; |Each thread can use

if (argc != 2)trials = :
input arguments

else trials = atoi (argv[1l]):

Initialize random in
srand (MYTHREAD*17) ’ math Iibrary

for (1=0; i1 < trials; i++) hits += hit();
pi = 4.0*hits/trials;
printf ("PI estimated to %f.", pi);

Each thread calls “hit” separately

>

:r}

'ﬁ‘ 2/7/11 NS R Cray XE Training 11

Helper Code for Pi in UPC

* Required includes:
#include <stdio.h>
#include <math.h>
#include <upc.h>

* Function to throw dart and calculate where it hits:
int hit () {
int const rand max = OxFFFFFF;
double x = ((double) rand()) / RAND MAX;
double y = ((double) rand()) / RAND MAX;
if ((x*x + y*y) <= 1.0) {
return(l) ;
} else {
return (0) ;
}
. }

;“\l‘\'m 2/7/11 m Cray XE Training 12

EEEEEEEEEEE

2/7/11

Shared vs. Private
Variables

m Cray XE Training

13

Private vs. Shared Variables in UPC

« Normal C variables and objects are allocated in the private
memory space for each thread.

« Shared variables are allocated only once, with thread O
shared int ours; // use sparingly: performance
int mine;

« Shared variables may not have dynamic lifetime: may not

occur in a in a function definition, except as static. \Why?

Thread, Thread, Thread,
7))
7
2
S o ours: | Shared
© 0O
© ®©
—- Q : : .
g 7 mine: mine: oo o mine:
[<) Private
O
’l/'>| "h‘ 2/7/11 NEeR Cray XE Training

Pi in UPC: Shared Memory Style

 Parallel computing of pi, but with a bug

main (int argc, char **argv) ({ record hits

int i, my trials = 0;

shared int hits: shared variable to

int trials = atoi(argv[1l]); divide work up evenly

srand (MYTHREAD*17) ;

my trials = (trials + THREADS - 1)/THREADS;

for (i=0; i < my trials; i++)
hits += hit();
upc_barrier;

accumulate hits

if (MYTHREAD == 0) {
printf ("PI estimated to %£.", 4.0*hits/trials);
}
} What is the problem with this program?
27111 NER Cray XE Training

GO
&, 2
¥
A%)
A 2

%, &)

Shared Arrays Are Cyclic By Default

» Shared scalars always live in thread 0
« Shared arrays are spread over the threads

« Shared array elements are spread across the threads
shared int x[THREADS] [* 1 element per thread */
shared int y[3] [THREADS] /* 3 elements per thread */
shared int z[3] [3] [* 2 or 3 elements per thread */

* In the pictures below, assume THREADS =4

-Red elts have affinity to thread O

Think of linearized

C array, then map
X . in round-robin

* As a 2D array, y is
y . . . logically blocked
by columns
Z .‘—‘
. . Z is not

/ﬂ /\
rrrrrrr ’m‘

2/7/11 NEeR Cray XE Training 16 (0
3,

Pi in UPC: Shared Array Version

« Alternative fix to the race condition
 Have each thread update a separate counter:
-But do it in a shared array

-Have one thread compute sum

all_hits is
shared int all hits [THREADS]; shared by all
main (int argc, char **argv) ({ processors,

... declarations an initialization code omitted just as hits was
for (i=0; i < my trials; i++)

all hits[MYTHREAD] += hit(); update element
upc_barrier; with local affinity
1; (MYTHREAD == 0) {

for (1=0; i < THREADS; i++) hits += all hits[i];
printf ("PI estimated to %£.", 4.0*hits/trials);

}

>

r:rr}

"" 2/7/11 NEeFR Cray XE Training 17 (D

2/7/11

UPC
Synchronization

m Cray XE Training

18

UPC Global Synchronization

« UPC has two basic forms of barriers:

— Barrier: block until all other threads arrive
upc_barrier
- Split-phase barriers
upc notify; this thread is ready for barrier
do computation unrelated to barrier
upc wait; wait for others to be ready

« Optional labels allow for debugging
#define MERGE BARRIER 12
if (MYTHREAD%2 == 0) {

upc_barrier MERGE BARRIER;
} else {

upc_barrier MERGE BARRIER;

>

}

A
|||‘ 2/7/11 NeF Cray XE Training

ST AR
1 v
A s
% %
1508:

Synchronization - Locks

Locks in UPC are represented by an opaque type:

upc lock t

Locks must be allocated before use:

upc_lock t *upc all lock alloc(void) ;
allocates 1 lock, pointer to all threads

upc_lock t *upc global lock alloc(void);
allocates 1 lock, pointer to one thread

To use a lock:
void upc_ lock (upc_lock t *1)

void upc unlock (upc lock t *1)
use at start and end of critical region
Locks can be freed when not in use

void upc lock free(upc_lock t *ptr);

>

r:r—rr}

"" 2/7/11 NS R Cray XE Training 20

Pi in UPC: Shared Memory Style

 Parallel computing of pi, without the bug

shared int hits;

main (int argc, char **argv) ({
int i, my hits, my trials = 0; create a lock
upc _lock t *hit lock = upc all lock alloc();
int trials = atoi(argv[1l]):
my trials = (trials + THREADS - 1)/THREADS;

srand (MYTHREAD*17) ;

for (i=0; i < my trials; i++) accumulate hits
my hits += hit(); locally

upc_lock (hit lock) ;

hits += my hits; accumulate

upc_unlock (hit_lock) ; across threads

upc_barrier;

if (MYTHREAD == 0)

printf ("PI: %$£f", 4.0*hits/trials);

> }

'ﬁ‘ 27111 NER Cray XE Training 21

Recap: Private vs. Shared Variables in UPC

* We saw several kinds of variables in the pi example
-Private scalars (my hits)
-Shared scalars (hits)
-Shared arrays (all hits)
-Shared locks (hit lock)

Thread, Thread, Thread,
where:
hits: n=Threads-1
" -]
o hit lock:
i)
| -
S Q | all hits[0]: ||all hits[1]: all hits[n]: || Shared
© ©
— Q
g 7 my hits: my hits: XX my hits:
[<) Private
o
r,r/r>| .ﬁ‘ 2/7/11 NeF Cray XE Training 22
S Sksvp

2/7/11

UPC Collectives

m Cray XE Training

23

UPC Collectives in General

* The UPC collectives interface is in the language spec:
- http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

« It contains typical functions:
- Data movement: broadcast, scatter, gather, ...
- Computational: reduce, prefix, ...

* Interface has synchronization modes:

— Avoid over-synchronizing (barrier before/after is simplest
semantics, but may be unnecessary)

- Data being collected may be read/written by any thread
simultaneously

» Simple interface for collecting scalar values (int, double,...)
- Berkeley UPC value-based collectives
- Works with any compiler
— http://upc.Ibl.gov/docs/user/README-collectivev.txt

>

j\\m 217111 m Cray XE Training 24

EEEEEEEEEEE

Pi in UPC: Data Parallel Style

* The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

« Use a reduction for better scalability

#include <bupc collectivev.h> Berkeley collectives
[/ no shared variables
main (int argc, char **argv) ({

for (i=0; i < my trials; i++)
my hits += hit();

my hits = // type, input, thread, op

bupc allv reduce(int, my hits, 0, UPC ADD),;
[/ barrier implied by collective
if (MYTHREAD == 0)

printf ("PI: %f", 4.0*my hits/trials);

m 2/711 NEeF Cray XE Training 25

UPC (Value-Based) Collectives in General

» General arguments:
- rootthread is the thread ID for the root (e.g., the source of a broadcast)

- All 'value' arguments indicate an I-value (i.e., a variable or array element, not a literal
or an arbitrary expression)

- All 'TYPE' arguments should the scalar type of collective operation
- upc_op_tis one of: UPC_ADD, UPC_MULT, UPC_AND, UPC_OR, UPC_XOR,
UPC _LOGAND, UPC_LOGOR, UPC_MIN, UPC_MAX
» Computational Collectives
- TYPE bupc_allv_reduce(TYPE, TYPE value, int rootthread, upc_op _t reductionop)
- TYPE bupc_allv_reduce_all(TYPE, TYPE value, upc_op _t reductionop)
- TYPE bupc_allv_prefix_reduce(TYPE, TYPE value, upc_op_t reductionop)
« Data movement collectives
- TYPE bupc_allv_broadcast(TYPE, TYPE value, int rootthread)
- TYPE bupc_allv_scatter(TYPE, int rootthread, TYPE *rootsrcarray)

- TYPE *bupc_allv_gather(TYPE, TYPE value, int rootthread, TYPE *rootdestarray)

» Gather a 'value' (which has type TYPE) from each thread to 'rootthread', and place them (in
order by source thread) into the local array 'rootdestarray' on 'rootthread'.

- TYPE *bupc_allv_gather_all(TYPE, TYPE value, TYPE *destarray)

- TYPE bupc_allv_permute(TYPE, TYPE value, int tothreadid)

» Perform a permutation of 'value's across all threads. Each thread passes a value and a
unique thread identifier to receive it - each thread returns the value it receives.

>

rr/r-rr}

il 2/7/11 NER Cray XE Training 26
y

BERKELEY LAB

Full UPC Collectives

- Value-based collectives pass in and return scalar values
- But sometimes you want to collect over arrays

- When can a collective argument begin executing?

* Arguments with affinity to thread i/ are ready when thread i calls the
function; results with affinity to thread / are ready when thread i returns.

« This is appealing but it is incorrect: In a broadcast, thread 1 does not
know when thread 0 is ready.

— 11§

_ shared

! ! local
dst dst dst
src i src i src
. A / Slide source: Steve Seidel, MTU

rreeerer

‘ 2/7/11 NS § Cray XE Trai ing 27

BERKELEY LAB

UPC Collective: Sync Flags

* In full UPC Collectives, blocks of data may be collected

« A extra argument of each collective function is the sync mode of type
upc_flag t.

» Values of sync mode are formed by or-ing together a constant of the form
UPC_IN_XSYNC and a constant of the form UPC_OUT_YSYNC, where X
and Y may be NO, MY, or ALL.

- If sync_mode is (UPC IN_XSYNC | UPC OUT YSYNC), then if X is:

- NO the collective function may begin to read or write data when the first thread
has entered the collective function call,

- MY the collective function may begin to read or write only data which has
affinity to threads that have entered the collective function call, and

- ALL the collective function may begin to read or write data only after all threads
have entered the collective function call

e andif Yis

— NO the collective function may read and write data until the last thread has
returned from the collective function call,

- MY the collective function call may return in a thread only after all reads and
writes of data with affinity to the thread are complete3, and

- ALL the collective function call may return only after all reads and writes of data
are complete.

>

rreeerer

il 2/7/11 NER Cray XE Training 28
y

BERKELEY LAB

2/7/11

Work Distribution
Using upc forall

29

Example: Vector Addition

- Questions about parallel vector additions:

- How to layout data (here it is cyclic)
- Which processor does what (here it is “owner computes”)

/* vadd.c */
#include <upc relaxed.h>
#define N 100*THREADS

cyclic layout

shared int v1[N], v2[N]~ sum[N];

void main () {

int i; / owner computes
for (i=0; i<N; 1i++)

if (MYTHREAD == 1i3%THREADS)
sum[i]=v1[i]+Vv2[i];

>

;::ﬁ

| 271 NeF Cray XE Training * €

Work Sharing with upc_forall()

* The idiom in the previous slide is very common
- Loop over all; work on those owned by this proc
« UPC adds a special type of loop
upc forall (init; test; loop; affinity)
statement;
 Programmer indicates the iterations are independent
- Undefined if there are dependencies across threads

« Affinity expression indicates which iterations to run on each thread.
It may have one of two types:

- Integer: af£inity%THREADS iS MYTHREAD
- Pointer: upc_threadof (affinity) is MYTHREAD

e Syntactic sugar for loop on previous slide
- Some compilers may do better than this, e.qg.,
for (i=MYTHREAD; i<N; i+=THREADS)
- Rather than having all threads iterate N times:
for (i=0; i<N; i++) if (MYTHREAD == i%THREADS)

>

A
reeocee| |

‘ 2/7/11 NS R Cray XE Training 31

EEEEEEEEEEE

Vector Addition with upc_forall

* The vadd example can be rewritten as follows
« Equivalent code could use “&sum[i]” for affinity

* The code would be correct but slow if the affinity
expression were i+1 rather than i.
#define N 100*THREADS

The cyclic data
shared int v1[N], v2[N], sum[N]; distribution may
perform poorly on
void main() { some machines
int i;
upc_forall (i=0; i<N; i++; 1)
sum[i]=v1[i]+Vv2[i];

r:r—rr} W 2/7/11 Ne R Cray XE Training 32 | ;

2/7/11

Distributed Arrays
in UPC

33

Blocked Layouts in UPC

« If this code were doing nearest neighbor averaging (3pt stencil) the
cyclic layout would be the worst possible layout.

* Instead, want a blocked layout

» Vector addition example can be rewritten as follows using a blocked
layout

#define N 100*THREADS
shared int |[*]|v1[N], v2[N], sum|[N]; blocked layout

void main() {
int i;
upc forall (i=0; i<N; i++;| &sum[i])

sum[i]=v1[i]+v2[i];

}

>

.:::ﬁ

- 2/7/11 NEe K Cray XE Trainin 34 {0
y g {5

Layouts in General

 All non-array objects have affinity with thread zero.
 Array layouts are controlled by layout specifiers:
-Empty (cyclic layout)
-[*] (blocked layout)
—[0] or [] (indefinite layout, all on 1 thread)
—[b] or [b1][b2]...[bn] = [b1*b2*...bnN] (fixed block size)
» The affinity of an array element is defined in terms of:
-block size, a compile-time constant
-and THREADS.
* Element i has affinity with thread
(i / block size) % THREADS

 In 2D and higher, linearize the elements asina C
representation, and then use above mapping

) [27 B crey e Training 3% ()

Pointers to Shared vs. Arrays

- In the C tradition, array can be access through pointers
 Here is the vector addition example using pointers

#define N 100*THREADS
shared int v1[N], v2[N], sum|[N];

void main () {

int i; | | | []

shared int *pl, *p2; v \\i;;/’

pl=vl; p2=v2; P
for (i=0; i<N; i++, pl++, p2++)
if (i %THREADS= = MYTHREAD)
sum[i]= *pl + *p2;

>

r:rr}

.ﬁ‘ 2/7/11 NEeF Cray XE Training

.

g

8

5

* e} 2
G
‘(

UPC Pointers

Where
does the
pointer
reside?

int *pl;

Where does the pointer point?

Local Shared
Private pl p2
Shared p3 p4

/* private pointer to local memory */

shared int *p2; /* private pointer to shared space */

int *shared p3; /*
shared int *shared

shared space */

p4; /* shared pointer to

Shared to local memory (p3) is not recommended.

>

rreeerer

A
'"‘ 2/7/11

EEEEEEEEEEE

Cray XE Training

shared pointer to local memory */

37

UPC Pointers

Thread, Thread, Thread,
-
§ p3:” p3:-T p3:
5 0 P4 7| P4 T " p4: Shared
0 |
)
(D.E p1: V4 p1:’/ eoo p1: -
C || p2: p2: - p2: 4 | Private
int *pl; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */

int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to

shared space */

Pointers to shared often require more storage and are more costly to

dereference; they may refer to local or remote memory.

rm

A
'"‘ 2/7/11

EEEEEEEEEEE

\

iz Cray XE Training

38

Dynamic Memory Allocation in UPC

« Dynamic memory allocation of shared memory is
available in UPC
* Functions can be collective or not

—A collective function has to be called by every
thread and will return the same value to all of them

>

;“\l‘\'m 2/7/11 m Cray XE Training 39

EEEEEEEEEEE

Global Memory Allocation

shared void *upc global alloc(size_ t nblocks,
size t nbytes);

nblocks : number of blocks
nbytes : block size

* Non-collective: called by one thread

« The calling thread allocates a contiguous memory space in the
shared space with the shape:

shared [nbytes] char[nblocks * nbytes]

shared void *upc all alloc(size t nblocks,
size t nbytes);

 The same result, but must be called by all threads together
« All the threads will get the same pointer

void upc free (shared void *ptr);

« Non-collective function; frees the dynamically allocated shared
memory pointed to by ptr

>

r:rr}

'"‘ 2/7/11 NEeF Cray XE Training 40 (¢

Distributed Arrays Directory Style

* Many UPC programs avoid the UPC style arrays in

factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc alloc(local size*sizeof (double));

1171 1| [|directory

m

—

* These are also more general:

* Multidimensional, unevenly distributed

. * Ghost regions around blocks

rreeerer

.ﬁ‘ 2/7/11 NEeF Cray XE Training

physical and
conceptual

7/ 3D array

layout

41

2/7/11

Performance of
UPC

m Cray XE Training

42

PGAS Languages have Performance Advantages

Strategy for acceptance of a new language
* Make it run faster than anything else

Keys to high performance
 Parallelism:

—-Scaling the number of processors
« Maximize single node performance

—-Generate friendly code or use tuned libraries
(BLAS, FFTW, etc.)

 Avoid (unnecessary) communication cost
-Latency, bandwidth, overhead

-Berkeley UPC and Titanium use GASNet
communication layer

» Avoid unnecessary delays due to dependencies
—-Load balance; Pipeline algorithmic dependencies

r/r/r>| ‘m‘ 2/7/11 m Cray XE Training 43 (4 W)
\ 4

One-Sided vs Two-Sided

one-sided put message
address data payload ——* host
Py CPU
network
two-sided message Jec UL
message id data payload — memory

* A one-sided put/get message can be handled directly by a network
interface with RDMA support

- Avoid interrupting the CPU or storing data from CPU (preposts)
» A two-sided messages needs to be matched with a receive to
identify memory address to put data
- Offloaded to Network Interface in networks like Quadrics
- Need to download match tables to interface (from host)
- Ordering requirements on messages can also hinder bandwidth

>

L:”\lf\fm 2/7/11 m Cray XE Training

EEEEEEEEEEE

Ping Pong Latency

—UPC MPI - Large Pages —MPI - Regular Pages
10000

1000

100

Time (us)

10

> B 0) > D © X D O @ ok D a0 AV © G &
LG Sl R RN) P g P P Y b B OGS

>
/\
f(reeeee

I N | ' »
BERKELEY LAB

PingPong Bandwidths

—UPC —MPI Large MPI

B o)
o o
o o
o o

3000

Bandwidth (MB/s)

2000

1000

0 S

> O v © X © N © > D A© v
S LY q/gv & ,\q’l'\éb%%({/\ & ,\6\(;%\”‘ B & /\,\@‘1/ S

Message Size (Bytes)

>
/\
f(reeeee

|||‘ NEeR

BERKELEY LAB

GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages
100%
90% - m MPI
B GASNet
80% -
x 70% -
©
)]
Q. 60% -
I 50% - 750
wid
c
8 40% -
— | 4
o ()
8 o 30% -
(@)
2 20% -
Q.
=]
~ 10% -
O i T S e
Han3/Alpha BEan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

GASNet excels at mid-range sizes: important for overlap

/—\ o Joint work with UPC Group
cecooesp e 2/7/11 NEeF Cray XE Trainin
,\ y g

Communication Strategies for 3D FFT

chunk = all rows with same destination

 Three approaches: X
* Chunk:

« Wait for 2" dim FFTs to finish
* Minimize # messages
e Slab:

e Wait for chunk of rows destined for 1
proc to finish

» Overlap with computation
* Pencil:
» Send each row as it completes

» Maximize overlap and
* Match natural layout

pencil =1 row

Joint work with Chris Bell, Rajesh slab = all rows in a single plane with
Nishtala, Dan Bonachea same destination
:’—“\”| "2/711 NEeR Cray XE Training 48 (@

FFT Performance on BlueGene/P

PGAS implementations
consistently outperform MPI
Leveraging communication/
computation overlap yields
best performance
More collectives in flight
and more communication 5599
leads to better
performance
At 32k cores, overlap
algorithms yield 17%
improvement in overall
application time
Numbers are getting close to
HPC record
Future work to try to beat
the record

~
\
ziw NEeR

3500

3000

2000

GFlops

1500

1000

500

0

HPC Challenge Peak as of July 09 is
~4.5 Tflops on 128k Cores

—4-Slabs

—#-Slabs (Collective)
—*—Packed Slabs (Collective)
=><MPI Packed Slabs

256 512 1024 2048 4096 8192 16384 32768
Num. of Cores

NAS FT Variants Performance Summary

1100 T | T ! ! !
B Best NAS Fortran/MPI | g | ; 5 ijlops
1000 |~ - Best MPI (a|ways S|abs) ,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,, _ ,,,,,,,,,,, . .
900 | [L____]Best UPC (always Pencils) | S . . i/
800f IEEEREERTRRERRRE e R R SEERTRPERPRRES -
L4 -8 700k - AAAAAAAAAAAAA _
2 : : : :
[] E 600 _
(] . . .
2 500 SRS (| R . o =
o : ; ;
[T . . .
= 400 . B]
300 —
200 .
100 .
0
2
gland 51
Joint work with Chris Bell,
= A Rajesh Nishtala, Dan Bonachea
eceer?] W27 NEF Cray XE Training 50

BERKELEY LAB

Case Study: LU Factorization

» Direct methods have complicated dependencies

- Especially with pivoting (unpredictable communication)

- Especially for sparse matrices (dependence graph with holes)
* LU Factorization in UPC

- Use overlap ideas and multithreading to mask latency

- Multithreaded: UPC threads + user threads + threaded BLAS

» Panel factorization: Including pivoting
« Update to a block of U
« Trailing submatrix updates

« Status:
- Dense LU done: HPL-compliant
— Sparse version underway

/-‘\I A Joint work with Parry Husbands
crecee? m‘ 2/7/11 m Cray XE Training 51 (4N
BER %:u::;a

UPC HPL Performance

X1 Linpack Performance Opteron Cluster Altix Linpack
Li k
1400 Performance periormance '« MPI HPL numbers
m MPYHPL 160 - from HPCC
1200 a UPC
140 database

1000 200

120 -

-Large scaling:
«2.2 TFlops on 512p,

c0 | MR *4.4 TFlops on 1024p
40 jmuUPC | (Thunder)

20 -

100

800 150 -

GFlop/s

600 80

—

GFlop/s
GFlop/s

100 +
400 -

L

50 -
200 -

-

0 0
60 X1/64 X1/128 Opt/64 Alt/32

« Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid

- ScalLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)

- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s
 n = 32000 on a 4x4 process grid

- ScaLAPACK - 43.34 GFlop/s (block size = 64)

- UPC - 70.26 Gflop/s (block size = 200)

= A Joint work with Parry Husbands
rereerd) | 27t NEF Cray XE Training 52

0 4

Application Work in PGAS

* Network simulator in UPC (Steve Hofmeyr, LBNL)
* Rea-space multigrid (RMG) quantum mechanics f*
(Shirley Moore, UTK)

» Landscape analysis, i.e., “Contributing Area
Estimation” in UPC (Brian Kazian, UCB)

« GTS Shifter in CAF (Pre4(i)ss|, Wichmann,

Long, Shalf, Ethier, 35 /)“

Koniges, LBNL, B //

Cray, PPPL) 2 20 /:f ~#-MPI-gts
i T o

[=— ‘J-:"/
5 bf—d/

4096 8192 16384 32768 65536 131072
MPI Processes / CAF images

Summary

« UPC designed to be consistent with C

-Some low level details, such as memory layout are
exposed

—Ability to use pointers and arrays interchangeably
 Designed for high performance
-Memory consistency explicit
-Small implementation
» Berkeley compiler (used for next homework)
http://upc.lbl.gov
« Language specification and other documents
http://upc.gwu.edu

r/r/nr>| ‘m‘ 2/7/11 m Cray XE Training 54 (0
\ s 4

PGAS Laflyfixges for Manycore

« PGAS memory are a good fit to machines with explicitly managed
memory (local store)

— Global address space implemented as DMA reads/writes

- New “vertical” partition of memory needed for on/off chip, e.g.,
upc_offchip_alloc

— Non-blocking features of UPC put/get are useful
« SPMD execution model needs to be adapted to heterogeneity

Network

e o ¢ Private on-chip

Computer Node

I:

, Shared CPU CPU
1 | x5 x: 7 partitioned -
y: [

Computer Node

CPU CPU

Yy | y: 0 On-Chip CPU Memory CPU Memory

Shared
off-chip
DRAM

>

